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Abstract 
We have developed a system capable of measuring electrical resistance over a wide temperature range. The system primarily consists of a vacuum 

device, a cryostat, a measurement unit, and a control computer. The downsized sample stage with a diameter of 18 mm and a height of 35 mm has 

been achieved by simplifying of the stage’s design, which allows us to measure electrical resistance from a low temperature of 100 K to a high 

temperature of 400 K. As a demonstration of the measuring system, we measured the electrical resistance of a Pt 1000 resistor. The temperature 

coefficient obtained is  /K, which is almost identical to the well-known Pt1000 resistor. Moreover, we measured the resistivity of 

Ni2.02MnGa0.98 ferromagnetic Heusler alloy. The determined characteristic temperature corresponds with the values obtained by a commercial high-

performance physical property measuring system with an accuracy of approximately 1K. Both results show that this measuring system can accurately 

measure electrical resistance across a wide temperature range. 
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Fig.1 Schematic diagram of electrical resistance measurement by (a) two-terminal method and (b) four-terminal method
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Fig.2 Block diagram of electrical resistance measuring system
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Fig.3 An example of LabVIEW measurement screen
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Fig.4 Photo images around cryostat

(a) Appearance of cryostat

(b) Enlarged view of SUS cross

(c) Enlarged view of SUS rod and sample stage (d) Dewar bottle in a box
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Fig.7 Temperature dependence of electrical resistance for platinum resistor (PT 1000)

―39―



L 2 L

100 %

8 400 K 370 K (T ) A

PM FM TC
A TC

A

260 K (T )

P TP 230 K M M

TM M (T )

PPMS Quantum Design

(2) 1 PPMS

1 K PPMS PPMS

380 K 450 K

450 K 450 K

Table 1 Comparison of various characteristic temperatures of Ni2.02MnGa0.98 determined from electrical resistivity measurements

PPMS (2)

TC 369.2 368.7

TP 262.2 260.5

TAf 240.2 239.2

TMs 233.5 232.8

Fig.8 Temperature dependence of electrical resistivity for Ni2+xMnGa1-x (x=0.02). TMs and TAf are the martensitic transition 

starting temperature and the reverse martensitic transition finishing temperature, respectively. 
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