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A Topological Condition for a Linear Time-Varying
Electric Circuit to be Represented by a Canonical
Equation

Tosiro Koga* and Yasumasa Sujaku®

Abstract

As is well known, electric circuits consisting of a finite number of resistors, capacitors, and inductors including
mutual inductances can be described by the Lagrange-Maxwell equations, which are equivalent to loop equations
due to Kirchhoff. However, if we further intend state-space approach to the representation of electric circuits,
there arises a problem of finding conditions under which such an electric circuit may be represented by a canonical
equation, i.e., by a state equation. It is decisive that electric circuits are distinctive from the Newtonian mechanical
systems in the point that the quadratic form which represents magnetic energy stored in all the inductors, which
corresponds to the kinetic energy of a mechanical system, is not necessarily positive definite. This paper presents,
in the necessary and sufficient manner, a topological condition for an electric circuit prescribed by a Lagrange-
Maxwell equation to be represented by a state equation, without any modification such as insertion of any excess
inductors.

Keywords: State equation of electric circuits, topological condition for state-space representation

1. Introduction

It is well known that an electric circuit consisting of a finite number of resistors, capacitors, and inductors
including mutual inductances can be described by a Lagrange-Maxwell's equation, which is equivalent to a loop
equation due to Kirchhoff. If the rank of the coefficient matrix of inductors of the loop equation is equal to the
number of the fundamental loops of the circuit, then the loop equation can be rewritten by a canonical equation with
respect to the state variables, i.e., to electric charges and magnetic fluxes stored, respectively, in all the capacitors
and the inductors in the circuit under consideration.

While, if the rank of the coefficient matrix of inductors is less than the number of the fundamental loops, then
the loop equation of the circuit can not necessarily be represented by a canonical equation. Therefore, if we intend
to rewrite the loop equation in a canonical form, that is, if we take state-space approach to the circuit representa-
tion, then we have to clarify conditions under which the electric circuit be representable by a canonical equation. It
is noted that electric circuits are distinctive from the Newtonian mechanical systems in the point that the quadratic
form with respect to the magnetic fluxes corresponding to the kinetic energy in the mechanical systems is not
necessarily positive definite. There have so far been some contributions in which such conditions as mentioned
above are given only in a sufficient manner or only as algebraic conditions[1].

In this paper, provided that an electric circuit can be described by a Lagrange-Maxwell equation, we clarify a

topological condition, in the necessary and sufficient manner, for the electric circuit to be represented by a state
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equation without modification such as insertion of any excess inductors.
2, Circuit Equations

Let G(V, E) be the connected and oriented graph of a linear time-varying circuit N, where V and E are
respectively sets of all vertices (nodes) and branches contained in G. Let E=FE,UE:U Ex, where
Ev={bg A=1,2, ... , ni)
Ec={bs; y=1,2, ... , nc} (1)
Er={bs; 0=1,2, ... , a}
are respectively sets of branches each of which contains an inductor (1), a capacitor (C), and a resistor (R), in
which Greek letters 4, 7, and p are respectively used for discriminating L, C, R from each other. It is noted that
E., Ec, and Er may have common branches, and that electric sources are only voltage sources contained in
branches.
We shall hereafter assume that L, C, and R are positive valued so that
0<La(D) <Ly, 0<C (<G, 0<R(t) <Ry, (2)
and may smoothly vary in time, that is, their differentials with respect to time are continuous. Each branch current
i is represented by the derivative of electric charge ¢ as

== 3
Next, let £ be partitioned into a tree
Em:t.':{[i; !:1, 2, iy H*l], 'H:‘ V| (42{)
and cotree
corree =18 £=1,2, ..., I}, I=|E|-|V|+1 (4h)
and let
YT
C=[ [M }, where M =[x (5)
=i

be the fundamental cut-set matrix of G(V, E), where I, is the /X[ identity matrix, mx {0, 1, —1} in the /X (n
—1) submatrix M and its rows correspond to branches of cotree o and columns to those of the tree Epe. Then,
all the branch currents are expressed by the /-vector

q:(dl. (,.’2, i iy G'[) (6)
d+'s being the cotree currents, multiplied by the fundamental loop matrix
R=[M, Ix] (7)

derived from (5).
To describe the circuit equation, following Lagrange-Maxwell, we define three kinds of energy functions

L

T=T(G ) =5 E L0 (sa)
U=Ulgy 1) :-%--:ICM) a5, (8b)
F=Flg,, ) =~ S R(1) i, (8c)

=]
which denote respectively magnetic energy stored in all the inductors, electro static energy stored in all the
capacitors, and dissipation energy. Then, substituting the cotree variables g, q into g,’s, ¢.'s, ¢.'s, we obtain the
circuit equations:

GOLN B O, k=121, )

di\dge) " dqr | dgw
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the ex’s being e.m.f.’s summed up along /-th loop; this is an alternative expression of the well-known loop equations.
3. Derivation of the state equation

Following the Hamilton-Jacobi formalism, we can choose as two kinds of state variables, i.e., generalized
coordinates and momentums respectively, the electric charges stored in capacitors and the magnetic fluxes interlink-
ed inductors in the circuit under consideration. In our case, the generalized coordinates are defined by (6), and the
generalized momentums are defined by

p=Tlpenld) p g f, ()
where ¢, *+, s are assigned to respective currents in the cotree:

{t& k=12, ... , F1CEcotres, (1
which are necessary for representing all the branches of E,. We shall assume that T (¢, ... , 4r) is positive definite
with respect to gu, ... , ¢~ Then, ¢, ... , ¢, can be determined uniquely from (i) as

de=8u (D, ..., p7), k=1,2,... f. (12
It is obvious from (I that
pe=0, k=f+1,/+2 ..., 1 13
ie.,
m:ﬂ—(ﬂﬁﬁiﬂx fH1<k<! 19
hold. Therefore, substituting (I} and (14 in (9), we have
pr=—9L -ty 1<ks], (152)
0=~ gé‘: —%wh fH1<k<!, (15b)

Next, it is easily seen from (8c) and (1) that %can be expressed as

%:fllk(ﬁ}. oy Br) Fhae(Gran, vy dd, k=1,2,...,f, (16a)
Il j 0, k= ! (16)
e = fuk(By ooy D) Fherldron, oo, @), E=fF1 00,0
where fiik, fik, fox, and for are all of linear form, and that fax(gss1, ... , o) can be written as
. .
fzzk—a(.-,k. k=f+1,...,1, (16¢)
where Fo=F (G4, ..., ¢0) 1s, in general, a nonnegative quadratic form.

It is seen by substituting (16a) and (16b) in (15a) and (15b) that Grs1, ..., ¢: can be eliminated from (15a) and
(15h) only if (15b) can be solved uniquely in g+1, ... , ¢ by substituting (16b) in (15b), ie. if ¢i's can be written
in general as

Q=2 q, oo, qu D1y o, Dr), FHISEZL {1
This is possible only if F3 is positive definite.

From the argument above, under the assumption that both T (dy, ... , ds) and Fz(drsy, ... , §) are positive

definite, we conclude that (9) can be represented by the state equation of the form:
q|_ 4@
(4]=4[ 9]+ Be. 8

Remark I. A distinct point of the description by the state equation is that it admits rather weak constraints on the
continuity of elements of the matrix A.
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4. Topological condition for T and I to he positive definite

We shall first state, from the graph theoretical viewpoint, the necessary and sufficient conditions for 7 and I%
to be positive definite.
Definition I For a given connected graph G(V, ), let £, be a subset of E, where |Ei|=p<b=|F£] and denote
currents of the branches belonging to £, by a row p-vector u= R”. Then, the branches of £, and the quadratic form
ulWu' is said to be positively weighted if W=diag[ Wi, ... , W,], where W, >0.
Definition 2: By Euee and Ecome denote respectively the set of branches of an arbitrarily chosen tree and its cotree
out of the G(V, £) given in Definition 1, and denote
E\NEwee={t; k=1, ..., 11}, p=<p<n—1, (19
for £y in Definition 1, in which #=|V|. Let C(f) be the fundamental cut set such that it contains only i out of e,
and let C"(4) = C(#) =114} C Ecorree be expressed as
CU) =lywtf; 7=1, .., v}, 0<w=l, (k=1,.., 1), 0
in which { =|Feotee| =b—n+1, where b=|E|, and y.’s are elements of a x> v submatrix of the fundamental cut set
matrix of G(V, E). Then, for

S=8(E)=0C(w, o)
the sets of links
S](El) :S*SﬂEinEwrrw, (22)
S;ﬁ( El) = S N EI N Emucz', (23)
S‘? ( l‘:|) = EI N F:(‘u!rc(' =5h E[ N IfCiJII'CL’. (210

are uniquely defined as relatively disjoint sets by the decomposition of the set S U (£ Eeoree), which are called the
Jundamental subsels of the cotree associated with an £y and Evee on G(V, E).
Definition 3: Let u“E R’ be a row f-vector made of the branch currents of the joint set Si(E) US:(E) USa(E)),
where f=fi+ fi+ fi with/e=|Se (E1) |, k=1, 2, 3, and write the p-vector u= R* in Definition 1 as u=u°M. in which M
is an /X p submatrix of the fundamental loop matrix of G(V, E). Then, the quadratic form u“MWM ‘u® is called
the compact form of uWu'.
Remark 2: It is easily seen from Definition 2 and 3 that /=[S, (£) US:(£) USs(E)|=A+ fot frand f<p hold in
general, since Sy (E))'s are relatively disjoint.

Now, we state the theorem.
Theorem 1. With symbols and notations being the same as in Definition 1-3, the compact form of a positively
weighted quadratic form uWu' is positive definite, if and only if the fundamental subsets S;(£:), S:(E)), and S;(E)
of the cotree associated with an Fyand Euee on G(V, E) satisfy the conditions:

(i) If Si(E) is written as
i o
Si(y) =‘Ul{?’ﬁff’; =1, ... ,?’}, h=

Si

, (25)

where 74's are elements of a X v submatrix of the fundamental cut set matrix of G(V, ), then the vectors
ri={rn, v e Yk 7=1 00 00 2
are linearly independent.
(i) The vectors
={rn, Vim s vidy JEATL AL L fith (o0
associated with
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SUE) =" Uyt k=1, ..., v}, =S4 o9
are linearly dependent on the 7;'s defined in (i), but all branches belonging to S:(F)) are positively weighted.
(i) Al branches belonging to S; are positively weighted.
(Proof) Given Eyon G(V, E), for arbitrarily assigned tree E:, the decomposition into the fundamental subsets of
the cotree of Eue, i.€., into Si, Sz, S;is unique and these subsets are relatively disjoint. Therefore, in order for the
compact form uMWM ‘u* of ulWu' to be positive definite, it is necessary and sufficient that the matrix MWM* is of
full rank, and this is obviously satisfied under the condition (i), (ii), and (i). Q.E.D.
To sum up the above-mentioned statement and the argument in Section 3, the next theorem is obtained as a
corollary to Theorem 1.
Theorem 2: The necessary and sufficient condition for a time-varying LCR circuit N to be described by a state
equation in terms of charges g=1(q, g, ... , q;) on respective links of the cotree and generalized magnetic flux p=
(p, P, ..., po), which is determined from the magnetic energy 7 (q, {) with ¢=(di, ¢z ... , ¢:), is that there exists
a tree Eyee on the connected graph G(V, E) on N such that if each of £, and
E's=Ex—Ex N (S(EL) U(ELN Ecotree)) @
is assumed to be the set £, of Theorem 1, then Theorem 1 holds respectively in each case for k£y=FE; and £i=E's.

5. Coneluding Remarks

We have obtained in this paper a topological condition, under which a linear electric circuit, time-invariant and/
or time-varying, can be described by a state equation. Further, state-space approach to nonlinear electric circuits
will be of importance especially in studying chaotic behavior of the electric circuits. It is seen from the discussion
in Section 3 that the argument on the elimination of the time-differentials of generalized coordinates, g1, ... , 41,
shown with regard to the equations (I0) through (15b), can be generalized to some nonlinear circuits consisting of
passive linear inductors, passive capacitors, linear and/or nonlinear, and nonlinear resistors by applying the implicit
function theorem in place of the above-mentioned argument on the elimination of Gs.1, ... , ¢.. Therefore, the

topological condition obtained in this paper will be valid in some extent in the nonlinear circuits.
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