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On the Fourier Analysis and the Lagrange Interpolation
from the Viewpoint of Signal Theory

Tosiro Koga*

ABSTRACT

The Fourier analysis is of importance not only as just one of the mathematical tools for processing signals and
noise, but also for its intrinsic role in the representation of almost every informational feature of physical objects.
This paper discusses some aspects related to the Fourier analysis, sampling theory, and the Lagrange interpolation
from the viewpoint of signal theory. First, the intrinsic role of the Fourier analysis is clarified in relation to the
wave equations and the human sensation in vision and hearing. Next, an algebraic approach to the Fourier
analysis based on the Lagrange interpolation is shown as the theoretical basis of the sampling technique. The
equivalence between the discrete Fourier transform (DFT) and the Lagrange interpolation on the unit circle in the
complex Z-plane, on which the so-called Z-transform is defined, is shown in an algebraic way. The Fourier series
expansion is derived as a limit of a Lagrange interpolation polynomial.

1. Introduction——Role of the Fourier Analysis in the Signal Theory

In preparation of a monograph on a review of the development of signal processings in this century (1), contents
of this paper has been written, as a byproduct, on the fundamental role of the Fourier analysis via the Lagrange
interpolation as the basis of the signal theory.

It is our basic knowlage that every visual information exibited out of the physical objects is carried by light, or
by electromagnetic wave, and similarly every audio information in the speach, music, etc. is carried by sound wave,
as physical signals to the receptors of our sense organs and the recognition of their features or states are made
respectively (2).

Distinguishable point common in both the cases mentioned above is that those waves are solutions of respective
wave equations of the same form, that is, they are necessarily expressible in D’Alembert’s general solutions, which
are represented in terms of arbitrary functions; for example, in one-dimensional case, the general solution of the
wave equation described as

de 1 de_

a2 1P ot =0, 1.1
U denoting the wave velocity, can be written as

elx, )=Fx—Ut)+glz+ Ut), (1. 2)

where f and g are arbitrary functions which will be precisely defined later. On the one hand, if ¢(x, t) is subject to
a boundary condition such that ¢(x, f) vanish always at two boundary points, say =0 and =g, then f(x) is
arbitrarily given as a general solution besides satisfying f(0)=/(a)=0, and also shown to be expressed, as an
alternative general solution, in a series of sine functions with the period of 2a; that is, ¢(x, {) must be expressible as
a Fourier sine series in the sense of the point function. This fact can be extended, in general, to aperiodic cases
provided that £ and g in (1.2) belong to Li(— oo, +cc) with respect to t; that is, ¢(z, {) can be represented as a point
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function by means of the Fourier analysis (3}, (4).

Moreover, though it is beyond our sensation to recognize the existence of the photon, if this concept can be
interpreted by a wave-packet, and if the wave-packet is to be a solution of the wave equation, then this solution must
not be a point function but a set function or a generalized function (5). In other words, the class of general solutions
of the wave equation may be much wider than the class of conventional point functions.

Mathematical verification of the statement above was established by Dirichlet, Riemann, Lebesgue, Shwartz, and
others. As is well known, Dirichlet first clarified a sufficient condition that a periodic function f(x) can he
represented by a Fourier series if /() is sectionally smooth(6), and finally Riemann and Lebesgue gave the necessary
and sufficient condition for an /(x) as a point function to be expressible as a Fourier series that £(¢) is periodic and
of bounded variation in the vicinity of any instant t under consideration (4), (5).

Referring to the above-mentioned argument, and considering that any signal must be stochastic, i.e., a collection
of such signals must have Shannon's positive entropy, we may conclude that the signals available in any field,
especially in the electrical, electronie, and information engineering can be specified by the condition that a signal f({)
belongs to L(—oe, +co) and is of bounded variation in the vicinity of any instant t under consideration, so that
Dirichlet’s "sectionally smooth” condition suffices it.

We shall clarify in the following sections basic properties related to the sampling and interpolation of the signals
specified above in relation to the Fourier transform.

2. The Lagrange Polynomial Interpolation

As the basis for the following discussion, we shall first refer to the well-known Lagrange formula of polynomial
interpolation (7).
Theorem 1: Given n + 1 points x=xy, Iz, 23, ..., Tas1 00 the real x-axis, and correspondingly real values y=u, ¥z

Y3y vy Ynsr, then a polynomial f(x) of degree n satisfying

Hxe)=ps, £=1,2, ..., n+1 (2. 1)
is uniquely determined by
fa)="3 2 (2. 22)
A‘:l‘jk (1‘*1&-)@'(&:)' .

in which

O(x)=(x—x)(x—2:) (3 —23)..(T = (1)
={z—z). (2. 2h)

Next, the polynomial interpolation on the unit circle in the complex plane can be derived directly from Theorem
I, by rewriting x and y(k=1,2, ..., n+1) in the formula (2. 2a) and (2. 2b) respectively by
Wy=c™urr (k=1,2, ..., n+1)
and
fe=f(W), £=1,2,.., n+l.

That is, we obtain the next theorem.

Theorem 2 : Given (n-+1) points We=c™*n1 (k=1,2, ..., n+1) on the unit circle in the complex plane, then a
polynomial /(W) of degree n satisfying

fe=f(Wa), k=12.., 0+ (2. 3a)
is uniquely determined by
ntl c{)( W}

i W):Elfkm, (2. 3b)
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in which
Q(W)=(W — W W — Wa).... W = W (W — Wyi1)

= Hi( W — enet) = W =1, (2. 3¢)

3. Sampling Theorem as an Extension of the Lagrange Polynomial Interpolation

We shall use a conventional terminology, an analog signal or analog signals, instead of time-series of the signal
in the continuous time. Qur sense organs, visual and hearing, have limited resolving power, and hence, the frequency
response of our sensation shows band-limited characteristics. This fact will be understood from our experiences such
that we can enjoy listening to a violine sonata by a CD player and watching beautiful scenary in TV, of which all the
signals are composed of discrete pulse trains. The principle by which analog signals can be equivalently represented
by discrete time series is summalized in the following
Sampling Theorem (8), (9) : Let the Fourier transform of an analog signal f({)€ Li(—co, +20) be

Fljo)= [ itea, (3.1
and let /() satisfy the condition of band-limitation:

|[F(jw)| =0 || > we. (3.2)
Then, f(¢) can be represented in terms of its sampled values

{f/(nT); n=0, £1, £2, ...}, (3. 3a)
in which

_m_2n e

T= e (W=2wc), (3. 3b)
as

A= B FnT)Salt—nT) 3. 4a)
where Sa(t), the sampling function, is defined by

_sin(wet)
Sa(f)—iwd . (3. 4b)

(Proof) The formulas (3. 4a) and (3. 4b) are considered to be an extension of the Lagrange Polynomial Interpolation.
From this view-point, an alternate proof is given as follows.

If we substitute

xe (h=0, £1, £2, ..., Z(n+1)) (3. 5a)
for x4 in the formula of the Lagrange Polynomial Interpolation, then we obtain
n+1
o= 5y (3. 5b)
B e VAN
k
in which
o= T -1 =21[(E)-1] (3. 50)
% k==~(n+1) Tk k=1L \ T i 2 9

If we put I=—§- in (3. 5¢), then it can be rewritten as

-~ r n+l ! 2
o=+ () 1] 38)
Next, with reference to the well-known expansion of the sine function as an infinite product (3)

2 2
sintr = (1 *%)(1 —;Er)(l—%)---.
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taking the limit of (3.6) as n—oo, we obtain

() = *};sin(%)

Therefore, considering that

OE)=Lsin( ) =(~1)L5in(ZLAT)),

(@ emrs=(O N ner =2 (1S

and rewriting f(r):f(—") as f(#) and y.=/f(kT), we have

0= 3 fer) SOl LL) f;g) we=7

This is what we have wanted to prove. Q.E.D.
4. Egivalence of the Inverse Discrete Fourier Transform and the Lagrange Polynomial Interpolation

A periodic function () with the period 27 of bounded variation can be extended, as is well known, in a complex
Fourier series:

flx) IH:E:C,.GW, (4. la)
in which
o [ f@esde k=0, £1, £2,..). (4. 1b)

In digital computation of (4. 1a) and (4. 1b), (4. 1b) is approximated by the Discrete Fourier Transform, DFT,
defined in general by

Co=-LThe™ ¥ (n=0,1,2,..,N-1), (4. 2)
where
fo=fx) (£=0,1,2,.., N-1) (4. 2b)
in which
ze=k2E  (k=0,1,2,..,N-1). (4. 2)
N Wi ’
For the coefficients Cy's defined by (4. 2a), the Fourier series (4. 1a) is approximated by a finite Fourier series:
fla)="Tcwe™ (4. 2d)

We shall prove that the approximate Fourier series obtained as the inverse transform of the DFT defined above
is equivalent to a Lagrange interpolation polynomial defined in Theorem 2.
Theorem 3 : Let f(x) be a periodic function with the period 2, and let £(x) be of hounded variation. Let the DFT
of /(x) be
Ca= L':Z_‘:ifke""‘j; (n=0,1,2,..,N-1), (4. 3a)

in which
(e fash 2e=b2E, =0,1,2,.., N1} (4. 3b)
Then, the inverse DFT of (4.3a) can be expressed as

Z Cnemz ka( LV @( W)

We) @' (W) (4. 42)
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where W=e"*, and

We=e*¥  (k=0,1,2, .., N-1), (4. 4b)
and

QW) = (W—Wo)(W—= W W —Wa)..A W~ Win-ny)

N-l 5
=L (W—e*¥)=W*-1. (4. 4c)

(Proof) From (4. 4¢), we obtain

O (W) =Ne* =¥ "=Ne*%  (k=0,1,2, ... N-1), (4. 5)
and hence, the right-hand side of (4. 4a) can be written as

N=1 o N _
F(W) = e

We shall rewrite (4. 6) as a polynomial in W. To do this, we consider the relation, for 0<t<N-—1,

WwY—1 _ W=
(W=We)~ (W-We)"

and the formula which is well known in elementary algebra:

N _ N-
% A Al 4.7)

Substituting (4. 7) in (4. 6), it is rewritten as

(4. 6)

N-1
F(W)= 2 f"e”‘ "’Z [

2 lfir fmk‘—: Hjn

=0n=
7=v m].:. - ~Jnk1§ n
= (Ngf A)W. (4.8)
Referring to (4. 3a), (4. 8) can be expressed as
F(W)= 2 CaW",

We have thus obtained Theorem 3. Q.E.D.
Corollary : It is seen from (4. 8) that, in order for

fo= 2y 2 fue Y (4. 92)
to hold for arbitrarily given values fi's,

1S - inm 25 ne2E o

——ngoe N e N =B (4. 9b)

must hold, in which the symbol éax denotes Kronecker's symbol defined by
Sme=1(m=k), =0(m+k). (4. 9¢c)

5. Fourier Transform as a Limit of the Lagrange Polynomial Interpolation

Let f(x) be a periodic function with the period 27, and denote sampled values of f(x) by

fk f(Ik) for .rk_AW {_Ngng) (5 1)

Then, denoting f(x) by

fx)=F(W)=F(e™), (5. 2a)
we see from Theorem 2 that W¥F(W) can be expressed by a Lagrange interpolation polynomial W¥Ey( W) of degree
2N as
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v e (W)

W FN(W)_k:z_:ka(W_ Wk)@!(Wk)' (5 Zb)
in which

(W)= 1 (W—e*R)=ws1-1, (5. 2)
and

(W) =N+ W =N +1) W " (5. 2¢)
By Egs. (5. 2b) - (5. 2¢) and considering the identities

CD(W): WZNH*W;ENH (_Nﬁn[ng), (5 3)
(5. 2b) can be rewritten as

WZN-H W 2N+1 W
N k &

WUEI)= 3, i W=W) 2N+ (5.4)
Next, writing

WA= W3 = exp(iON +1)z) ~exp(N + )i o

—exp(J(QNH) +k§%—))

: (2N +1
(BXD(J%(I_'?ZQ_;))—EXD(—J( 5 )( :’%)))
=27 exp(; (ZNH (x +k2—7r)) sin(M( Azl)) (5. 5a)
IN Z 2N

W — We=2; exp(j= {r-HL jN)) %in( E (x —/(?j\%)) (5. 5h)

and substituting these relations in (5. 4), we obtain, from (5. 2a) and (5.4),
2N+1
x B (( 2 7 e _’[‘W}) 1
E( W):fH(I)=k:Z_f fx (5. 6)

We shall now prove

Theorem 4 : Let f(x) be a periodic function with the period 27 of bounded variation, and let fx{x) be defined by (5

provided that fi=/f(xs) at -rk:/f

lim fi(a)=/(x),

holds.

sin(é Ti— kzi) B

(—=N=<k=<N). Then,

—n<k<m (5.7)

(Proof) We shall define a step function (10) by

onlx)=fe =f(,!g_22-]1:’-f)y eI =[kEE

the discrete Dirichlet kernel by

2N’UL+1) ] (5. 83)

Dila; B)=Di(z—k42)= 2 ] (5. 8b)
sm( (1 — k- V))
and a step function du{x; £) by
Tlirld”(‘r; k=1 for x=I*", and =0 for xeE 1Y, (5. 8¢)

Then, referring to Theorem 3, we see that DN(I“‘]{%) satisfies

. 6),
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WVL—IDN(:; B)=8u, x=z'22—§r, 5. 8d)

8. being Kronecker 's symbol, and we may write

oule)=, 2, oMl Krgxrr

=217]::¢~(u)A.u(x:[%])du. (5. 9)

in which the brackets means Gauss' symbol. Here it is noted that the right-hand side is Lebesgue integrable(10).
Further, define an integral

2
sin(%{.r - u))

sin( (2N +1) (x— u))

Ixlz)= 21?[ :If( u) du, (5. 10)
and write
f2)— Fulx)=(A(x) - en(z) = (Fu(z) —en(2)), (5. 11a)
Fu(x) = (@) =(fulz) — on(x)) = (Fx(2) — o). (5. 11b)
Then, since /() is of bounded variation by assumption, it can be shown that for arbitrary ¢ >0, there exists an integer
N such that
[A(x)—en(zx)|<e, —m<x<m (5.12)
holds. We may write, from (5. 9) and (5. 10), as
Fulx)—en(z)=

. ((2N+1)(u_ ))
%f flu) % _(DN(H)AN(II[%R:I) du, (5. 13)
3 Sin(f(ufr)>
and, from (5. 6),
fulz) 7@1\4(1):*2“,?’/\2(1'}(0,&(1'2 B —dn(x; A))Tl‘l“l (5. 14)
From (5. 13), we obtain
(2N+1)
& ¥ sin[~*~—u—2x)
| /3(z)—on(z) \Sﬁf | f(2e) = pulue) | ( ? ) du
£ sin(2 zt—x))
. ((2N+1)
-/ sin (—x)
+~21? _[” ( 2 )——AN(I; [%u}) o) dul. (5. 15)

sin(%{u—.r))
Applying Schwarz's inequality to the first term on the right-hand side of (5. 15), and considering (5. 12), we have

) sin(%{u —I))

sin(%%zt fr))
: ((2N+1)(H_I)) 2 \3

Sin
T 2
dH

o [ 70 - entw) a5 [ L)

<E. (5. 16a)
Next, in the second term of the right-hand side of (5. 15), for arbitrarily chosen &' >0, there exists a sufficiently large

glf;ﬁl Flu)—gnlu du<

integer N such that
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1'[,, Sin((gN;D(u—x))
2| L sin(é%z(*a‘))

hold. From (5. 14), an inequality similar to (5. 16¢) holds:

— s [%ﬁu}) ox(u) du|<e (5. 16b)

N
|f~'(.r)_¢‘\'(.r)|£k§";| Dl k)= dn(z; k) | | @N(I) |ﬁ (5. 16¢)
Here, for an arbitrarily chosen &”>0, if we choose a sufficiently large integer N, then
ﬁ[ Dx(x: k) —dn(x; k) | <&”

holds, and, from (5. 16¢), we have

|[Av(x) — en(z) <&” Max| ox(z)| <Ke”, (5. 16d)
K being a proper constant.
Next, since we have, from (5. 11a) and (5. 11b),
()= Fnx)l <] fx)—enlx) | + | Fulz)— enl), (5. 17a)
and
filz) = Fula)l <| i) —gnla) | + | Fulz)— onlz)), (5. 17b)
substituting (5. 16a), (5. 16b), and (5. 16d) in (5. 17a) and (5. 17b), we abtain, for sufficiently large integer N,
|fx) = Fxla)l<ete, | fulx)— Fnla) | <e'+Ke”, (5. 17¢)

and hence,
() = ) <| f(x) = Fula) | + | fulz)— Fu()]
<e"=eg+2e'+Ke" (5. 18)
where ¢ >0 can be chosen arbitrarily. We have thus proved Theorem 4. Q.E.D.
From the above-mentioned proof, we obtain the next corollary.

Corollary to Theorem 4 :

, sin(—(-2N+ ) (x—u))

Az)=lim [ f(x)
sin(

dut. (5. 19)
NowJj-1

2
é%xf zz))
6. Concluding Remarks

Time series of physical signals can be classified as linear or nonlinear, stationary or nonstationary, according to
characteristics of information sources from which the signals are delivered. No matter how their classification are,
they can be represented by using the spectral distribution obtained by the Fourier transform as is mentioned in
Section 1, and hence, how to model the information sources from the statistical data of signals, i.e., from their spectral
distributions, is the fundamental problem of the signal processing. However, this problem is, in essence, still open and
most desirarable to be solved.
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