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Formulae of Maximum Stresses and Tensile Stiffnesses
for Rectangular Array and Zig-zag Array of Elliptical Holes
in Solids under Uniaxial Tension

Hidenobu IGAWA*

Abstract

This paper is concerned with theoretical analyses of a rectangular array and a zig-zag array of elliptical holes
in solids under uniaxial tension. In the analyses, we choose suitable unit regions, and express Laurent series
expansions for the complex potentials in forms satisfying the traction-free conditions along the elliptical hole
edges. Then the unknown coefficients in the Laurent series are determined from the boundary conditions at the
outer edges of the used unit regions. At this stage, we use a procedure based on element-wise resultant forces and
displacements in order to get highly accurate results. Numerical results of the maximum stresses represented in
dimensionless forms in the whole range of the shapes of the holes including cracks, and the tensile stiffnesses of
the solids with the holes, are given for various values of the parameters. The results are fitted to reliable
polynomial formulae for convensience of engineering applications.

Key words: Two-Dimensional Elasticity, Tension, Stress Concentration, Stress Intensity Factor, Tensile Stiff-
ness, Elliptical Holes, Cracks

1. Introduction

Holes are found in many natural and manufactured solid materials, and their effects on the structural behavior
of solids are of continuing concern. In particular, the presence of the holes causes weakening and apparent lowering
of Young's modulus of the materials. Therefore, in order to use the engineering structures safely, we should estimate
the exact strength and stiffness of the materials with the holes.

In this paper, we consider a rectangular array and a zig-zag array of elliptical holes in solids under uniaxial
tension as two-dimensional models of randomly distributed holes in materials.

In the analyses, we choose suitable unit regions, and express Laurent series expansions for the complex potentials
in forms satisfying the traction-free conditions along the elliptical hole edges. Then the unknown coefficients in the
Laurent series are determined from the boundary conditions at the outer edges of the used unit regions. At this stage,
we use a new procedure based on element-wise resultant forces and displacements in order to get highly accurate
results. This method was developed by Isida® and has proven a powerful technique both in plane problems and three
-dimensional problems™. Numerical calculations are carried out for various shapes, sizes, and square systems of the
elliptical holes in solids. The analytical values are then fitted to reliable polynomial formulae for convenience of
engineering applications.
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2, Theoretical analysis

2. 1. Complex stress potentials
In plane problems of elasticity, the Cartesian components of stress, reslutant force and displacement are given
in terms of two complex potentials ¢(z), ¢(2) as follows:
o tax=4¢(2)

Oy—0x+ 20t =2 2¢"(2) +¢"(2)] (1)
Pyt iPe=—§(2) - 2¢/(2)— ¢'(2) @)
2G(u—ww)=x@(2)— 29 (2)—¢'(2), @)
where ( is the shear modulus and x is defined by Poisson’s ratio v as
3-v
1T (plane stress) (4)

3—4y (plane strain).

This paper deals with the following two typical distributions of elliptical holes in an infinite solid subjected to
uniaxial tension:
Problem (a): Rectangular array of elliptical holes (Fig. 1(2))
Problem (b): Zig-zag array of elliptical holes (FFig. 1(b)).

In both the problems, let 2a and 26 be the major and minor diameters, p be the radius of curvature at the end
of the major axes of the elliptical holes, and b, ¢ be the spacings in the directions parallel and vertical to the load,
respectively, as shown by Figs. 1(a) and 1(b). The x- and y-axes are taken with their origin at the center of one of

the elliptical holes, and the solids are subjected to an average tensile stress ¢ in the y-direction.

2. 2. Laurenl series expansions of complex stress polentials

We take proper unit regions and express the complex stress potentials in forms satisfyving the symmetry
conditions of the stress state, as well as the traction-free conditions along the elliptical hole edges. We then
determine the unknown coefficients in the stress potentials from the boundary conditions at the outer edges of unit
regions.
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Fig. 1(a)  Rectangular array of elliptical holes Fig. 1(b)  Zig-zag array of elliptical holes




IGAWA:Formulae of Maximum Stresses and Tensle Stiffnesses for Rectangular Armay and Zig-zag Array of Elliptical Holes in Solids under Uniaxial Tendon — 9 —

For the above unit regions, we have chosen the rectangle ODHKO for Problem (2) and the triangle ODFO for
Problem (b) shown in Figs. 1(a) and 1(b), noting the symmetry of stress field about both the coordinates” axes.
The complex potentials ¢(z), ¢(z) must be analytic in the unit region, and they can be expanded in the following

Laurent series:

o

p(z)=2 (Ganz™®"" +M2n22"*i)

n=0

¢(z)=—Dilog z+ éﬂ(Dzr:+zz_2”—2 + K3q2"*%), (5)

where Gau, Mon, Dan, Koy are real coefficients. The complex potentials (5) also satisfy the conditions of symmetry of
the stress state about the x- and v-axes.
Since the elliptical hole is traction-free, some relations must exist among the coefficients of the Laurent series

(5). These relations were given by Isida™® as follows:

Dun= 2" (Pl Kap + R Mey)

Gon= = 20" Qi Ko+ 3 M) (6)

where P% etc. are constants given by b/a{=p/a), the ratio of the shape of the elliptical hole.

2. 3. Boundary conditions and determination of unknowns

The complex potentials (5), rewritten in terms of the independent unknowns Kz and Mz, using eqn (6), completely
satisfy the traction-free conditions along the elliptical hole edges, as well as the symmetry conditions of the stress
state in the x and y directions. Therefore, the unknown coefficients /K, and M.y must be determined only from the
boundary conditions along the sides DF and FK for the rectangular unit region in Fig. 2, or along the side DF for the
triangular unit region in Fig. 3.

For the numerical calculation, we use a method based on element-wise resultant forces and displacements. This
method was developed by Isida™® and proved a powerful technique in analyzing various problems of multi-connected
regions. The procedures for both the problems will be described below.

(a) Rectangular array of elliptical holes [Fig. 2]

We divide the sides DH and HK of the rectangular unit region into N, and N. equal intervals, respectively. These
intervals are @@, Q:@s, -+ and QnvQu+i (N=N,+N,), as shown in Fig. 2.
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Fig.2  Rectangular unit region Fig.3  Triangular unit region
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Side DH:
The stress state is symmetric about DH, that is; 7. vanishes and  is constant along DH. These conditions are
replaced by the following relations in terms of P, and « for each of the intervals:

[B)i=0 (i=1,2, - M)

[“]JH_[HL:O (7=1,2, -+, Ni—1), (7)
where j is the interval number. [P,]; is given from the real part of eqn (2) by taking the difference of Py at the two
points Q.1 and @, and [u]; is defined by the mean of & at @;., and ¢, which are obtained from the real part of eqn
(3), that is

[P)‘]J=P% am— Py

()i =(uqu+ua}/2 (i=1,2, -, N) (8)
Side HK:

The stress state is symmetric about side HEK, and we have the following relations similar to eqn (7):

[P]i=0 (j=Ni+1, M+2, -, N)

[e]in—[0);=0 G=M+1, Ni+2, -, N-1), (9
where [ ], [v]; are defined as

[Peli=Ps 0m—Pr s

[0)i=(ve,. T¥0,)/2 (j=Ni+1, Ni+2, =, N). (10)
Furthermore, the resultant forces along DH and HK should balance the external load, and we have
[PJi=0, 1P )k=0c. 1)

(b) Zig-zag array of elliptical holes [Fig. 3]
Let M be the mid-point of side DF, So the stress field is symmetric about M, and any two points Sy and S» on
DF which are equidistant from M(/) must be in the same stress state and displacements of these points relative to

M must be the same. These boundary conditions lead to the following relations:
[P =[Pl

(B4 =[P)&me (1=1,2, =, m; m=N/2) (12
()i =[ae]ime
[w]qrr =[w]§met (t=1, 2, -, m; m=N/2) (13
Furthermore, the resultant forces along the outer edges of the unit region should balance the external load, and
we have
[ )5=0, [P JE=0c. 19

Thus we have 2N relations by eqns (7), (9), (1) for Problem (a), and (2 +2) relations by eqns (19, (19, (14 for Problem
(b). Corresponding to these relations, we take 2N unknowns Kum(n<N), Mopn(n<N) for Problem (2) and (2N +2)
unknowns Kan(n<N+1), Mea({n <N +1) for Problem (b) neglecting higher order coefficients, and these unknowns are
determined from the corresponding boundary conditions shown above.

3. Numerical results and discussions

3. 1. Physical quantities and accuracy of vesulfs
Numerical results of the treated problems depend upon the ratio of @, b, ¢ and d, or upon the three dimensionless
parameters below:

_ Gl e B
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Table 1 Variations of results with subdivision numbers

Problem (a) Problem (b)

N | (e/d=1,a/c=08, p/a=025, | (c/d=1, a/c=08, p/a=025,
rectangular unit region) triangular unit region)
o/ o E*/Eo aa/ o E*/E,
8 7.9465 0.3533 7.9305 0.2291
16 7.9251 0.3535 7.9284 0.2292
24 7.9251 0.3536 7.9283 0.2292
32 7.9251 0.3536 7.9283 0.2292

In the present problem, we are especially interested in two quantities. One is the distribution of tangential stress
g along the hole, and other is the effect of holes on the apparent tensile stiffness of te solid. With reference to the

latter quantity, the followig dimensionless factor C is defined:
*

c Z%Ztensile stiffness factor
E*=apparent Young's modulus of solid with elliptical holes
FEo=Young’s modulus of material

_ E (plane stress) m
E/(1—* (plane strain)’

where £ is Young's modulus of the material measured with thin plate specimens. E* and E, depend on E and v, but

C=E*/Ey is independent of them and is common to the plane stress and the plane strain cases.

Numerical results from the present analyses are expected to approach the exact values with increasing numbers
of the boundary elements of the used unit regions, or N. As an example, Table 1 gives ¢4/ 0 and E*/F, with various
values of N when ¢/d =1, a/c=0.8 and p/a=0.25 for Problem (a), and ¢/d =1, a/c=0.6 and p/2=0.25 for Problem
(b). @4 is the tangential stress at point A on the hole edge as shown in Figs. 1(2) and 1(b). We find rapid convergence
of the results with increasing subdivision numbers.

It would consume an enormous number of pages to present here all the numerical results for a number of
combinations of the parameter x. For this reason, we take a square array (z=1) for Problem (a) and zig-zag array
(#=1) for Problem (b) as special distributions of the elliptical holes in solids. The procedure as shown in Table 1 has
been taken to confirm high accuracy of all the numerical results to be discussed in the following sections.

3. 2. Stress magnification factors and lheir formudae
In Problem (a), gmax, the maximum stress around the hole, occurs at point A as shown in Fig. 1(a). In Problem (b),
Omax OCCUrs at point A(#=0) in most of the calculated cases of & and A, but in some cases of € and A, gnax takes place
at some other point B(#=0) due to interference by the presence of obliquely located holes. We show such a case in
Fig. 4.
In representing these stresses, we use the following dimensionless factors Sa and S

_O o _ O
Si=2, 5= 0

where gy is the maximum stress for a single elliptical hole in a wide plate subjected to tension, that is

mu=a(1+2\/%)=a(l+2%). 18

The above dimensionless quantities represent the stress magnification effect due to interactions among the holes, and
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are convenient in the whole range of the hole shapes including cracks. Actually in the case of cracks (p—0), g and
gy diverge towards infinity, but Sy and Sg remain finite and are equal to the dimensionless stress intensity factors
based on ¢y7a, that is

(o=t Sala= 9

The maximum dimensionless stress Spax corresponding to the maximum stress is then defined as follows:
Smax=max(Sy, Se). {20
Numerical calculations have been carried out for the combinations of the following values of the parameters; y
=1 (square array), e=0 (cracks), 0.2, 0.4, 0.5, 0.6, 0.8, 1 (circular holes), 1.5, 2, 3, 4 and A=0, 0.1, 0,2, -+ for Problem
(a) pe=1,e=0 (cracks), 0.2, 1/3, 0.4, 0.5, 0.6, 0.8, 1
(circular holes), 1.5, 2, 3, 4 and A=0, 0.1, 0.2, - for

Problem (b). Results of the dimensionless quantities cl/d=1
defined by eqns (I§-(20 are plotted in Fig. 5(a) to Fig. 8(b), p/a=05 A=0
where symbols ‘(a)" and ‘(b)’ correspond to Problem (2) + A EE = 03
and Problem (b) throughout all the following figures 54 - 0.6
and tales. T (=)

Table 2(a), (b) show the numerical results of Swmes 1
for various values of € and A. In most of the calculated o=
cases, o gives the maximum tangential stress along y de
the hole edge, but not in the range bounded by the 0
dotted line shown in Table 2(b). In this range, gs occurs B A== x A N (T) A
at the some other point B(#+0) along the hole edge, as \yo " -5 I_U_tl i
shown in Fig. 4. The values of Suax and their locations a
f (in degrees) are also given in Table 2(b). Fig. 4 Distribution of ¢./¢ (Problem (b))

The values of Spax for Problem () and Problem (b)
are plotted by thick solid curves in Fig. &) and 5(b), 3.0
respectively. The thin solid curves in Fig. 5(b) show S S m!lx(sm -
in the range where Si< Smax. Smax — Sma

Smax for Problem (a) is given by Sa, and Smax - SA ol L e
curves for the calculated cases of ¢ increases 25— wecnn Eqn.(22.1)
monotonically as A increases and diverges towards —== Eqn.(222) I Sa
infinity when A—1.

2.0 ‘ 2.0

Smax = SA
Analysis
Smax ———— Equ.(21)
pla=4
15 1.5 /
Pra=4 | é
"% o.z,éjz. 06 ,_a 08 W 0.2 04 06 ,_g 08
C C

Fig.5(a)  Saax for Problem (a) (¢/d=1) Fig.5(b)  Spax for Problem (b) (¢/d =1)
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Table 2(8)  Swax for Problem (@) (¢/d=1)

pla

alc

0 0.2 0.4 0.5 0.6 0.8 1.0 1.5 2.0 4.0
0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.003 1.001 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.997
0.2 1.012 1.007 1.005 1.004 1.003 1.002 1.001 0.999 0.998 0.994
0.3 1.031 1.019 1.016 1.014 1.013 1.011 1.010 1.008 1.006 1.008
0.4 1.062 1.045 1.040 1.039 1.038 1.037 1.036 1.037 1.041 1.065
0.5 1.113 1.090 1.087 1.086 1.087 1.089 1.093 1.106 1.121
0.6 1.194 1.166 1.168 1.172 1.177 1.189 1.203 1.239 1.276
0.7 1.324 1.296 1.319 1.335 1.351 1.386 1.421 1.502 1.574
0.8 1.558 1.563 1.657 1.706 1.755 1.8435 1.924 2.097

Table 2(b)  Swax for Problem (b) (c/d=1)

ola
0 0.2 1/3 0.4 0.5 0.6 0.8 1.0 155 2.0 3.0 4.0
0.0 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.1 1.018 1.024 1.026 1.027 1.028 1.029 1.031 1.033 1.037 1.041 1.047 1.052

0.2 1.073 1.097 1.106 1.110 1.115 1.120 1.130 1.139 1.160 1.179 1.217 1.253

0.3 1.162 1.218 1.240 1.250 1.2656 1.280 1.309 1.339 1.413 1.489 1.640 1.772

0.4

ot

273 1.360 1.411 1.434 1.470 1.508 1.588 1.677 1.921 2.177 2.641 3.007

2.335 3.285 4.383
P L) ary @3y (26)

0.6 1.468 1.546 1.669 :@1.789 2.111 2.532 3.643 5.238 14.98

(9 (5  (18) (240 (@27) (33)

() : Location @ (in degree) of gmax occuring at the point B.

=2
=3
%]
N
=}
e
(=)
—
=23
r=3
=1
—
2
o
&
oo
—
[r=

0.5 1.383 1.491 1.57:

Smax for Problem (b) is given by Sa in wide range of 4, and increase monotonically with increasing values of A.
However, Smax for large values of A shows the different tendency of diverge due to the interference between adjacent
holes, depending on the three ranges of e as shown in Fig. 6 ( i -iii). Thus, when 0<e<1/3, the horizontally adjacent
holes touch each other as shown in Fig. 6( i ). In such cases, Spux is given by Si and diverges towards infinity when
A—1. When 1/3< <3, the obliquely adjacent holes touch each other when A=y&*+1/(2¢) as shown in Fig. 6(ii).
In such cases, Smax is given by Sg as the values of 4 get larger than A=0.4~0.5 and diverges towards infinity when
i—y&+1/(2£). When & >3, the vertically adjacent holes touch each other when A=1/¢ shown in Fig. 6(iii). Insuch
cases, Smax is given by Sy in the calculated range of € and A.

In the above, We calculated Swax for various combinations of € and A. However, when the values for some other
cases are required, we have to make interpolations with respect to two parameters, causing considerable errors in
the results. In order to get reliable results for arbitrary values of the parameters, let us make power series formulae
for Smax. Here we take into account for the behavior of Spux for both the problems. Then the behavior of Smay for
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=D

(i) 0= p/a<1/3 (i) 1/3<pfa<3 (iif) p/a >3

Fig.6  Three extreme cases when adjacent holes touch each other (Problem (b))

Problem (b) depend on two ranges of €, e<1/3 and £=1/3, as shown in Fig. 5(b), and different formulae in the two
ranges are expected to give better accuracy.
Considering the above aspects, we have fitted power series to the analytical values of Spax for both the problems,
and the following formulae are obtained:
(a) Square array of elliptical holes for Problem (a) (zz=1)
2
Smax=1+ {ITA[O.?.?S'F —0.4126e+0.13026*—0.0376 "+ A(—0.2764 +1.14656 —1.4701*4+0.5137¢%)
+2%0.7736 —2.5802¢ +6.9170&*—2.2693&*) + A% —1.0006 +3.74126 —11.9176&* 444548 &%)
+2%(0.3349 —2.2530e +7.6266 ¢ —3.2603¢*)]
(mean error=0.05 percent) @
(b) Zig-zag array of elliptical holes for Problem (b) (yz=1)
For the range of e<1/3
2
Smax=1-+ IATA[I.BIGQ +1.04366+0.5876*+A( —2.1638 +1.1838¢ —6.2676¢%)
+A%(3.8925 —9.3537c +35.7642&%) + A% —12.7934 4+ 3.93386 —56.6534 &%)
+A410.5138+1.9845¢6 +31.51756%)]

(mean error=0.04 percent) (22.1)
For the range of e=1/3
2
Swax=1+ #{1.7170+1.39166+U.284052+/1( —1.6954 —0.0039& —6.7001 &%)
17
Jei+1

+ 4%(36.2512 —83.29782 +80.8250&%) 4 A% — 138.479 +306.0856 —254.227&%)
+A4129.517 —298.641 +246.157%)]
{mean error =0.06 percent) (22.2)
Values from eqns (21)-(22,2) are plotted in Fig. 5(a), (b) as dotted curves and dashed curves, respectively,
showing close agreement with the analytical curves.

3. 3. Tensile stiffnesses and their formudae
Tensile stiffness factors C=E*/ E, defined by eqn (16 have been calculated for various values of € and A. Results
for both the problems are shown hy Tables 3(a) and 3(b), and are plotted in Figs. 7(a) and 7(b), respectively. E*/E,
decreases with increasing values of € in both the problems. As compared with both problems, the magnitude of
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decreasing E*/E, for Problem (b) are lower than that for Problem (a).

The decrease of the tensile stiffness factor is highly correlated with the area of obstructing the stress flow by
the elliptical holes. Thus, as holes exist in a material, the stress flow depends on the area of elliptical holes and dead
zones which are area of obstructing it around holes. We assume that the rate of an effective area occupied in the
used unit region, fe, is given by the sum of the rate of the area of the elliptical hole, £, and the rate of the dead zone,
g. f must be calculated from the area of the elliptical hole in the explicit form. But, as ¢ is difficult to be calculated
in the explicit form, we try to fit it by the power series of € and 4 on the base of the analytical values of £*/E, for
both the problems. Then, in the limiting case when e=0 (cracks), ¢, which is the volume fraction of the fictitious
circular holes enclosing the cracks, was useful in representing the tensile stiffnesses of the cracked solids'®. We gave
the parameter ¢ on the basis of trial-and-error procedure as satisfied on the above considerations and being
coincident curves of €0 to the curve of e=0 (cracks).

We determine the parameter f. as follows:

(a)Square array of elliptical holes for Problem (2) (x=1)

fe=f+q
T :Tﬂlf{zE

q :T”/l“(l = %e — %}.252). @

Table 3(a) E*/E, for Problem (2) (¢/d=1)

ola
0 0.2 0.4 0.5 0.6 0.8 1.0 1.5 2.0 4.0

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.1 0.984 0.981 0.980 0.979 0.979 0.978 0.977 0.975 0.974 0.970
0.2 0.940 0.928 0.923 0.921 0.920 0.917 0.914 0.908 0.903 0.889
0.3 0.873 0.850 0.842 0.838 0.835 0.829 0.824 0.814 0.806 0.782
0.4 0.790 0.758 0.746 0.741 0.737 0.729 0.722 0.709 0.698 0.670

0

0

0

0

alc

0.5 0.698 0.660 0.645 0.639 0.634 0.625 0.617 0.601 0.589
0.6 0.602 0.560 0.543 0.537 0.531 0.520 0.512 0.495 0.483
0.7 0.504 0.461 0.442 0.434 0.428 0.416 0.407 0.389 0.376
0.8 0.405 0.360 0.338 0.330 0.322 0.310 0.300 0.282

o O O C O O O O =

Table 3(b) E*/FE, for Problem (b) (¢/d=1)

ola
0 0.2 1/3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.969 0.962 0.960 0.959 0.958 0.957 0.955 0.954 0.950 0.947 0.942 0.938
0.881 0.855 0.848 0.844 0.840 0.836 0.829 0.822 0.809 0.797 0.778 0.762
0.751 0.699 0.684 0.677 0.668 0.659 0.644 0.631 0.602 0.578 0.542 0.517
0.603 0.526 0.501 0.490 0.475 0.461 0.436 0.414 0.370 0.337 0.298 0.278
0.463 0.368 0.335 0.320 0.299 0.279 0.245 0.216 0.164 0.132

0.349 0.245 0.204 0.185 0.160 0.137 0.100 0.072 0.028

ale

o o O O O O O
Oy o= W N = o
o oo O o O o =
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(b) Zig-zag array of elliptical holes for Problem (b) (pz=1)
fe=f+gq

f:-g‘/lze

(1:-275/12(1 e +5A352). .

The results are plotted in Figs. 8(a) and 8(b), taking /. as the abscissa A. We find that the E*/F,, f. -curves in
Figs. 8(2) and 8(b) lie in a narrow band than the £*/Es, A -curves in Figs. 7(2) and 7(b), respectively. Therefore, fe
is useful in representing the tensile stiffnesses of the solids with the elliptical holes.

Considering the above aspects, we have fitted power series of fe to the analytical values of £%/FE, for both the
problems. The resulting expressions for the stiffness factor are as follows:

(a) Square array of elliptical holes for Problem (a) (z=1)

d\* .
%} =1-1.9931f.+3.3372/2—4.6333 /5 +2.6823f¢ (mean error=0.5 percent) 5
()
1.0 1.0
E—* \ o
E, Ey
0.8 08 NN
\\ pla=0 pla=0
p,’a =4 i \5 \\
2 \ : =i 0.5
0.6 \ 0.6 pla
1 /\ 2
1
M \\ ) \\\\
0.2 0.2 N\ \\
0 0
0 0.2 0.4 06 5 - % 0.8 0 0.2 0.4 0.6 o % 0.8
Fig. 7a)  E*/FEy, A-relations for Problem (2) (¢/d=1) Fig. 7(b) E*/Ey, A-relations for Problem (b) (¢/d=1)
1.0 1.0
£t g
E Eo
08 \ 08 —
pla=4 \
06 \ 06 \
N pla=4
pra=o 02 pla=0
04 0.4 \ 2
| PNE | AN
_ 3 ‘ \ 02
——— Analysis ——— Analysis k“-\
0.2— =——¢—— Eqn.(25) 0.2 —-x—— Eqn.(26) o _1‘%
0 0
0 02 04 06 08y, 10 0 02 04 06 08 4, 10
Fig. 8a) E*/[Ly, fe-relations for Problem (a) (¢/d=1) Fig. 8b) E*/E,, fe-relations for Problem () (¢/d=1)
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(b) Zig-zag array of elliptical holes for Problem (b) (z=1)
*
%:1 —9.0111/,+1.9583/2—0.7786/2  (mean error=0.9 percent) 9
Values of eqns (5 and (26 are plotted in Figs. 8(a) and 8(b) as dashed curves with cross marks, respectively,

showing close agreement with the analytical values.
4, Concluding remarks

(1) A rectangular array and a zig-zag array of elliptical holes in solids under uniaxial tension were analyzed
theoretically. Numerical results were given for dimensionless streesses S, St and a tensile stiffness £*/Fo.

(2) In Problem (a), Smax occurred at point A. In Problem (b), Spax occurred at point A (§=0) in the most of A without
small and large values of &, but it took place at some other point B (#+0) for intermediate values of e and large
values of 4, due to interference by the presence of obliquely located holes.

(3) E*/E, decreased with increasing values of € in both the problems. We gave the rate of the effective area, f,
consisting of the sum of £, the rate of the area of elliptical hole, and ¢, the rate of dead zone, occupied in the used
unit region. We confirmed that /. was useful in representing the tensile stiffnesses of the solids with the elliptical
holes.

(4) The analytical values of Smex and E*/E, were fitted to reliable polynomial formulae for convenience of

engineering applications.
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