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Exact solutions of some nonlinear differential
equations and integrable discretization

Kenji TOMINAGA® - Norimasa SHIBUTANI*

Abstract:
We obtain a new method to solve the systems of some nonlinear differential equations ex—
actly. Using an integrable discretization of the differential equations, we obtain an iteration,
which solves the differential equations numerically. Our iteration converges more rapidly than

Euler’'s method.
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1. Exact solutions of ordinary differential equations

The inner product between x, ¥ € R" is defined by {(x, y) = x"y, where x” is the transposed vec—

tor of x. We consider the following nonlinear differential equations:

Ccil_-‘»;? =at+Ax+<{b, x)x, x(0) =z, LD

where a, b € RY are constant vectors, 4 is an NXN real matrix. We introduce a new method to solve

the differential equations (1.1) exactly.
Definition 1. Let A be an (N+1) X (N+1) real matrix such that

ay AN+

Qv+l 7 AN DNHD

We suppose that det(A) # 0, N > 1. Then we define the nonlinear mapping ¢, : R” — R" as follows.
For x = (zy,,25)" € RY, we set y = ¢, (x) = (y,yy)". The each components of y are defined by

N
Lim Tt Qv

yj . N '
Ly o 1@ v+ kT T Ay nivn

for j=1,+,N.
Lemma 1. Let A, B be (N+1) X (N+1) real matrices. We suppose that det(A) # 0, det (B) # 0,

N = 1. Then we have

¢’,1(§93(1')) — go,w(:r).
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Proof. Let A = (a;), B = (b)), ¢5(x) = (g, up)"s @a(@p(x)) = (2,,+-2,)". Then

N
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- N N
L= 1‘1(N+1)k(2f: lbijj+bk(N+l)) +a(N+1)(N+1)(EjE 1b(N+ndf+b<:v+1)(N+n)

N N+ N+1
- 2;; 112k 1@ by T+ Zk;:llaikbkwﬂ)
= = :
B T o180k bt Ee 2 @ v v

This is the i-th element of ¢ ,(x). [J
We consider the following autonomous differential equations:

dx _ o
i F(x), x(0) = x,, (1.2)

where F: R — R" is a smooth vector field. The solution x(¢) = u(¢, x,) has the following property:

u(0, x,) = x,, (1.3)
u(t+s, x,) = uls, u(t, x,)). (14)
Lemma 2. Let u(t, x) be the smooth function on RXR" into R™ which has the properties (1.3) and (1.4).
If we define

= 0t
Féx) = a1 (0, =),

then x(t) = u(t, x,) is the solution of (1.2).
Proof.
i .. GO R =0 &) oo 00 wlh ) —0ll my)
— = lim = lim
at s 0 s 50 s

u(s, ©)—u(0, =) _ ‘;_‘;(o, x)=Fx). O

= lim
s—=0 S

Theorem 1. Let A be an NXN real matrix such that

apy o 4y

Ay 0 Quy

where we suppose that N > 1. Let @ = (a,+ay)’, b= (b,,by)" be the N real constant vectors. We con—
sider the following differential equations:

dx

P a+Ax+<b, x>x, x(0) = x,. (1.5)
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We define the (N+1)X(N+1) real matrix B by

a, - a4y a

: ; : ( A a)
Ay 7 Ayy Ay -7 0/

—bl _.bN 0

&
]
Il

Then
x(t) = puw(x,y)

is the solution of (1.5).
Proof. From Lemma 1,

x(t) = u(t, ) = @u(x,)

has the properties (1.3) and (14). Then from Lemma 2, we only calculate (;—l:((), x). Let

a, (1) ()

A () Qe (D

For t=0, the exponential mapping is the identity matrix, so we have
a;(0) =38y, for i, =1, N+1.
The derivative of the exponential mapping at {=0 is the matrix B, so we have

a; (0) = ay, for ¢, j=1,-N, aiy:{0) = a,, for i=1,--N,
a;ij(O) = _b)» for ].:l,"',N, and a’(t\.w])(iv.,.l)(()) = 0.

Let

Iy w10 C8) Tt ey ()
¥ .
k= @D Tt ey n (D

(2,(8),,z2y()" = u(4, x), then 2,(¢) =

e
Since a,;(0) = §,;, note that kgla(,\,+1,k(0)rk+aw,”(NH,(O) = 1. Then we have

N N N
z;(0) = k;?}k(o)xk'i’a;(mn)w) _(kgfl;k(0)xk+aj(z\'+l)(0))(kgfxEN‘H)k (O zitaiy i (0))

N N
= kg]lcz,krk+aj+rj- ,Elbkzk'

Thus we obtain the conclusion. [
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Example 1. As the simplest example of our method we solve the following differential equation:

dr _ 2 .
7 1+z% z(0) = z,. (1.6)

Let

We have the exponential mapping:

( cost sin t>
&% = :
—sint¢ cost

Thus we obtain the solution of (1.6):

rycosi+siné  x,t tant

20 =pualag). = —xz,sint+cost l—xytant’ .
Example 2. We solve the logistic differential equation:
B (-2), 2(0) = n

where a is a positive constant. Let

We have the exponential mapping:

Thus we obtain the solution of (1.7):

z(t) = pulxy) = O

z(e”—1)+1"

2 . Gradient system

Let A be an NXN real symmetric matrix having eigenvalues such that 2, > 2, = - > Ay_, > 2. We
are interested in an algorithm to calculate the maximal eigenvalue A,. The starting point in the deriva—
tion of integrable differential equations is to consider the Rayleigh quotient of A,

{x, Ax)

R,(x) = (.

The well-known minimax theorem states that

Al = maxl RA(:C), ‘R'N — “m”iill RA(-T),

llzll=
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where || x ||°= {(x, x). One of the simplest strategies for maximizing R,(x) is the method of steepest
ascent. At a current point x, where || x || = 1, the function R,(x) increases most rapidly in the direction
of the positive gradient: VR,(x) = 2Ax—2{x, Ax)x, which is restricted to the unit sphere. Thus the
maximal eigenvalue A, of A can be calculated through the trajectory of the gradient system:

dx(t)

e Ax—(x, Ax)x, z(0) ==z, | xl=1. (2.1)

Note that if || x,ll =1, then [|x(¢) || =1. When we discretize (2.1) by Euler's method, there is no
conservative quantity. As we see later, the nonlinear equation (2.1) is essentially linear. Therefore, if we
discretize the linear equation, then the discretization may have a conservative quantity. This is a
fundamental idea of the integrable discretization (cf. [3, 4]).

Let P be an orthogonal matrix which diagonalizes A as D = PTAP =diag (1,,**Ay). Using x=Pr and
D = PTAP, the equation (2.1) can be transformed into the following equivalent form:

9

2 N
%’ft— = 272" 3 A, (2.2)

where r = ()", Let gy = (i), d = (A,Ay)". Then the gradient system (21) is also
equivalent to the following form:

dy(t)

FTR 2Dy—2{d, y>y, y(0) = y,, (2.3)

where y, = (r2(0),,7(0))". We note || r(¢) ||= 1.
Theorem 2. Let A be an NXN real symmetric matrix. We consider the following nonlinear differential

equations:
dx
R Ax—=xXwx, dAorx, x(0) =2 (24)
The solution of (2.4) is given by:
el.'lx
x(t) = 1 = (25)
V1= Nl I + Il ez, II*
Proof. We solve the equation (2.3). Let
2, 0 < 0 0
0 A, = 0 0
B=2: + " i i (2.6)
0 0 T
A, Ay 0

We have the exponential mapping:
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g™ 0 e 0 0
0 g™ 0 0
g? =
0 0 P 0
ef—1 oPf—] .. W1 |

The solution of (23) is y(¢) = ¢.s(y,). For each components of y(¢), we have

. eZJ.J»rijO)
o =Dy 0 +1"

where ¥, = (¥,(0),5,(0), -+, y4(0))". The denominator is as follows:

N N N N

1= 25, (0) + 3¢y, (0) = 1= X 7*(0) + LM (0)e™'5,(0)
= 1—<r(0), r(0)>+<er0), “r(0))

= 1-<{P"x, PTxy)>+{PePx, PePx,)

= 1= |y ll* + Il ez, II%.

Thus we have the solution of (2.4):

(eM'r,(0))*
— ,2 — 7 1 v
yj(t) T}(t) | xn”z+”emxo||z-
Hence, it follows that
e"'r(0)

r(t) = . =,
] ‘/1_ ”xo”z‘l'”el{l-ro”l

where the sign is uniquely determined by the initial condition. Thus we have

e’r(0)

r(t) = : =,
Vi— 12, lI* + || e, |2

Using again r = Px and PDPT = A, we obtain the exact solution (2.5). (]
Corollary 1. The solution of (2.1) is given by

1
P z,

() =TT

2.7

Proof. Since || x,||=1, it is obvious from Theorem 2. []
3 . Integrable discretization

As we showed in previous section, the nonlinear differential equations (2.1) are essentially linear.

That is, we only find the exponential mappping ¢", where B is in (2.6). This is the solution of a linear
differential equation:



TOMINAGA -+ SHIBUTANI . Exact solutions of some nonlinear

differential equations and integrable discretization —3l—
dx
s Bx, x(0) = x,. (3.1)

In this section it will be shown that if we discretize the linear equation (3.1) using the forward Euler
method, then the power method with a shift of the origin is derived. If we use the backward Euler
method, then the inverse iteration (also called fractional iteration) algorithm is obtained.

Consider the following approximation of (3.1) by the forward Euler method:
x(n+1)—x(n) = eBx(n), (3.2)

where € is a stepsize and we denote x(en) by x(n). Then the exponential mapping e¢” is approximated
by

1+2€A, 0 0 0
0 1+2ed, - 0 0
e =.f+eB'=
0 0 - 1421, O
2€2, 2eAd, 0 2€dy 1

where [ is the identity matrix. It suffices to solve for y(1) only, so we have

_ +42eapy(0) (1+2ex)y,(0)
B = T aed g, (0) TV (1 +2e1,)4,00)" £
since 2y _,%,(0) = 1. Hence we have
(1+2¢A,)y;(0)
+262.)—x i2 Y ;
vy ey UTERTT a0y @ | a+20)u0
; i1 (14+2e2,)9.01) 1+2e2,y,(0) Ty (1 42e2,.)%,0)°

N
L1 (25— 02 )3, (0)

The denominator is as follows:
N 2 N a 0 2
2 (1+2e20°,(0) = 2 (1+2€2,)°:(0) =[ (I+2eD)r(0) |I*.

So we have

(142€2,)7,0)
| (I+2¢D)r(0) I’

r(2) =
where the sign is uniquely determined by the initial condition. Using again r = P'x and PDP” = A, we
obtain

(I+2eA)x(0)
Il (I+2eA4)x(0) I

x(2) =

In general we have following iteration
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(I+eA)x(n)
| (I+eA)x(n) |

r(n+1) =
Thus the power method with a shift of the origin is obtained (cf. [5,7]).
In a similar way, we discretize the equation (3.1) by using the backward Euler method:
x(n+1)—x(n) = eBx(n+1). (34)

Then the exponential mapping e is approximated by

e? =~ (J—eB)™!
1—2€A, 0 0\ (1—2er)™" - 0 0
0 e 1—2edy 0 0 o (1-2ea) 7! 0
—22, - —2y 1 2e0,(1—2eA) ™" 2ed,(1—2e2,)"" 1

Then we have

(1—2e2,) " 'y,(0) (1—2€2,) 'y,(0) o (1—2ea) 'y, (0)

b1 = 1+2) 264, (1—2€2,) " 'y,(0) - 2y (14+2e2,(1—2e1,) Dy, (0)  zh_,(1—2e1,) 'y, (0)"

since 2p _,1,(0) = 1. Hence we have

(1—2€2) *y,(0)
sV (1—2e3,) "y, (0)

y;(2) =

The denominator is as follows:
N -2 L -2.2 -1 2
2 (=264 "y, (0) = 1 (1=2€4,) " (0) =1l (I=2¢D)"'r(0) II".

So we have

(1—2€2,)"'r€0)

1D = T T=2eDy O T

Using again r = P'x and PDP" = A, we obtain the following iteration

(I—eAd) 'x(n)
I| (I—eA)'x(n) I’

x(n+1) =

Thus the inverse iteration is obtained.
We will discretize the equation (3.1) by the second-order forward Runge-Kutta method. We have

k,+k,

z(1)—x(0) = 5

(3.5)

where F'(x) = Bx, k, = eF(x(0)) = €Bx(0) and k, = eF(x(0)+k,) = eB(x(0)+Bx(0)). Hence we
have
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x(1) = (J[+eB+—¢

Since
2 M 0
0 A 0
B*=4
0 0 rih
AN et
the exponential mapping e is approximated by
1+2€A,+2€%8 0
0 1+2€,+2€¢%2%
e ]+EB+E?EB2 =
0 0
2€,+2¢2} 2e,+2¢*2%

Using again =Y _,4,(0) = 1, we have

‘BHx(0).

(142€2,+2e*2) y,(0)

y, (1) =

Note that Zp_,y,(1) =1, then

(142eA;+2e*23) (1)

Tr - (1+2e2,+2e*22) y,(0)

1+2ed,y+2€A%

2eAy+2e%2%

(14+2eA;+2€%2%)%y,(0)

4(2) = S (12 ey (1) Zr.,(1+2eA, +2e2) 7y, (0]
So we have
(27 = (1+2e2,+2¢*23)7.(0)
f Il (I+2eD+2¢*D*)r(0) I’

(3.6)

where the sign is uniquely determined by the initial condition. Using again r = P'x and PDP" = A, we

obtain

(I+2eA+2€*A)x(0)

x(2) =

In general if we rewrite 2¢ by €, we have following iteration

T (T+2eA+262 D)2 (0) ||

(I+eA+(e/2) AV x(n)

x(ntl) =

Finally we solve the following differential equations numerically:

| (I+eA+(e/2)ADx(n) II”

x(0) = x,.
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‘fi—f = a+Ax+<b, xyx, x(0) = x,. G

where A is an NXN real matrix.
Let

A a
Bi= i
-7 0

We solve the linear differential equations dx/dt = Bx by Euler’s method, then we have x(n+1) =
(I,+€B)x, where I, is the (N+1) X (WV+1) identity matrix. Also it is the approximation of ¢, that is,
5 I+eA ea
e =, +eB+ .
—€b 1
where [ is the N XN identity matrix. So we have a new algorithm which solves the equation (3.7)
numerically;

(I+eA)x(n)+ea

x(ntl) = 1—e<b, x(n)) '

x(0) = x,.

Especially in one dimensional case, it is known as Riccati difference equation (cf. [2]). We consider the
following differential equation:

4z _ a+bzx+cx?, z(0) = x,.
dt
Then our iteration is as follows:
z(n+1) = Ll ebdm g z(0) = z,.
l—ecx(n)

Example 3. As the simplest example of our iteration we solve the following differential equation (see
Example D:

dz _ 2 -
T 1+z° z(0) L (3.8)

Euler's method yields that:
rz(n+1) = z(n) +e(1+z(n)?.
Our method vyields that:

z(n)+e

z(n+l) = —ex(n)

Table 1 shows the numerical results in which € = 0.1, table 2 shows the results in which € = 0.01. Our
method converges more rapidly than Euler's method, especially near the critical point ¢ = z/4 =
0.785398--+, it is evident.



