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Abstract:

A rectangular array and a zig-zag array of rigid short flat inclusions in an infinite solid subjected to biaxial
tension are considered in this paper. In the analyses, we lake a rectangular unit region and a triangular unit region,
and express complex stress potentials by eigen-function expansions in forms satisfying the continuity relations
along the inclusion boundaries. The unknown coefficients are determined {rom the boundary conditions in the unit
regions which are expressed in terms of the resultant forces and displacements. Numerical calculations are
carried out for various combinations of inclusion length and inclusion space. The stress intensity factor and the
tensile stiffness for the solids that contain inclusions are represented in figures. The results of the tensile stiffness
are fitted to polynomial formulae. They are useful to the design of the composite materials.

1. Introduction

Nowadays composite materials that consist of reinforced fibers dispersed in plastic materials are being used in
mechanical structures. These materials are in great demand as industrial products for light weighting and high
strength. However, rational techniques based on mechanical analyses have not contributed to the design to any great
extent.

Theoretical analyses on rigid short flat inclusions have been made by some researchers!! *. They were analyzed
on two or three inclusions in an infinite solid. The authors have studied on multiple cracks, elliptical holes and
circular inclusions®®!. The authors’ methods were useful for analyzing these problems.

This paper is concerned with theoretical analyses of periodic arrays of rigid short flat inclusions in solids under
biaxial tension. In the analyses, we chose suitable unit regions, and express complex stress potentials by eigen
-function expansions in forms satisfying the continuity relations along the inclusion boundaries. The unknown
coefficients are determined from the boundary conditions of the unit regions. At this stage, we use a procedure based
on the element-wise resultant forces and displacements in order to get highly accurate results.

Calculations are carried out for various inclusion sizes and inclusion spaces both vertical to and parallel to the
load. Numerical results of the stress intensity factor and the tensile stiffness for the solids that contain the inclusions
are given for various parameters. The results of the tensile stiffness are then fitted to polynomial formulae for the
convenience of engineering applications.

2. Theoretical analysis

2.1 Complex stress potentials
In plane problems of elasticity, the Cartesian components of stress, resultant force and displacement are given
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in terms of two complex potentials ¢(2), £2(z) as follows:

or+ay=4Re[$(2)], 0r—0oy—iry=2[¢(2)—Q(2)+2iv¢'(2)] 1)

PrtiPe=— [F(2)dz- [a)de+2iv60) D)

2G(u-+iv)=x [F(2)dz~ [Ae)de-+2in(2). (3)
where i is the shear modulus and x is defined by Poisson’s ratio » as

x=03—2)/(1+») (plane stress), 3—4v (plane strain). (4)

This paper deals with the following two typical distributions of short inclusions in an infinite solid subjected to
biaxial tension:

Problem (a): Rectangular array of rigid short flat inclusions (Fig. 1(a))
Problem (b): Zig-zag array of rigid short flat inclusions (Fig. 1(b))

The x- and v-axes are taken with their origin at the center of one of the inclusions as shown by Figs. 1(a) and
1(b). In both the problems, « is the half-length of the inclusions and b, ¢ are the inclusion spaces in the x,
y-directions. These solids are subjected to average tensile stresses @i, 62 in the x- and y-directions.

In the analyses, we take a rectangular unit region ODHEKO for the problem (a) shown in Fig. 2 and a triangular
unit region ODFO for the problem (b) shown in Fig. 3. We express the complex potentials in these unit regions by
the following eigen-function expansions:

2n=-1
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where A, and B, are real coefficients.
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Fig, 1(a) Rectangular array of rigid short flat
inclusions

2.2 Determination of unknowns

Fig. 1(b) Zig-zag array of rigid short flat
inclusions

Complex potentials (5) satisfy not only the symmetry conditions along x- and y-axes, but also the continuity

conditions for stress and displacement along the rigid inclusion boundary. Therefore, the unknown coefficients Ax

and B, must be determined only from the boundary conditions along the outer edges of the unite regions®!),

In the numerical calculation, we use a new technique based on element-wise resultant forces and displacements.

The procedures for both the problems are described below.

(a) Rectangular array of rigid short flat inclusions

We divide the sides DH and HK of the rectangular unite region into N; and N2 equal intervals, respectively.
These intervals are, @@, Q:@s, -+ and QvQy+1 as shown in Fig. 2, where N=N,+N..

Side DI

The stress state is symmetric about DI Then ze vanishes and u is constant along DH. These conditions are
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Fig. 2 Rectangular unit region Fig. 3 Triangular unit region

replaced by the following relations in terms of Py and u for each of the intervals:

[P)i=0 (j=1, 2, -+, N)

[e)ia—[a)i=0 (j=1, 2, -, Ni—1) (6)
where j is the interval number.

[2]; is given from the real part of Eq. (2) by taking the difference between Pyq,., and Pyq, at the two points
Qi1 and @y, and [a]; is defined as the mean of « at @4, and @; which are obtained from the real part of Eq. (3).
These lead to the relationships as followings,

[P.v]i = P.v.f);-a e PJ'.U;

[u)i=(ugm+ua)/2 (j=1, 2, -, N). (7)
Side HK:

The stress state is symmetric about side HK, and we have the following relations similar to Eq. (6):

[P);=0 (j=N+1, Na+2, -, N)

[v]lin—=[rli=0 (j=Ni+1, No+2, -, N—1) (8)
where [ P:];, [v]; are defined as

[Pe)i=Prosi— Pra,

[V]J:(I’OJ-\—!'PQJ)/Z (ijI+1; N2+2; "y N) (9)
Furthermore, the resultant forces along DH, HK should balance the external loads, and we have
[Pli=aic, [Pli=a:b. (10)

(b) Zig-zag array of rigid short flat inclusions

We divide the side DI of the triangular unite region into N equal intervals, respectively. These intervals are
Qe Qs -+ and QuQx1 as shown in Fig. 3, where N=2m.

Referring to Fig. 3, let M be the midpoint of the side DF in the triangular unit region ODFO. So the stress field
is symmetric about point M, and any two points Sy and S: on DF which are equidistant from M(Qn+1) must be in
the same stress state, and displacements of these points relative to M must be the same. These boundary conditions
are replaced by the following relations:

[Pe)@r =[Pel@imz, (PR =[P&m (¢=1,2, -, m; m=N/2) (1)
(e =[ecdimz, [w)r=[o]8me (+=1, 2, -, m; m=N/2). (12)
Furthermore, the resultant forces along the outer edge of the unit region should balance the external loads, and
we have
[PJs=aic, [P5=0:b. (13)
Thus we have 2N relations (6), (8), (10) for the problem (a), and (2N +1) relations (11), (12), (13) for the
problem (b). Corresponding to these relations, we take 2N unknowns A,(n<N), Bu(i<N) for the problem (a) and
(2N+1) unknowns A,(n<N+1), Bin<N) for the problem (b) neglecting higher order coefficients, and these
unknowns are determined from the corresponding boundary conditions shown above,
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2.3 Stress state around the rigid inclusion tips
The stresses around the rigid inclusion tips are obtained as follows!®);

—— —{ 3'2” —Slll**SIH%!g}
x—

Oy= —% cosy 0 5 1 —singsin—%ﬁ}
S . 8 (14x 0 3
To="jg= 5111_2—{ 5 CoSy cosfﬁ} (14)
where stress intensity factor { is found in the complex potential ¢(z) as follow:
/=242 lim[Vz2=a¢(2)]. (15)

3. Numerical results and discussion

3.1 Physical quantitics and accuracy of results
Numerical results of the treated problems depend upon the ratio of a, b, ¢. We define the following parameters:

A:%, T=%| ﬂ:%:}l"’_ (]G)

In the present problem, we are especially interested in two quantities. One is the stress intensity {actor, and the
other is the effect of inclusions on the apparent tensile stiffness of the solid. For these quantities, dimensionless
factors are defined by the following equations:

Dimensionless stress intensity factor:
F:---{:- G=0, Or 0o, (17)
ava’ e

Tensile stiffness factor:

foF, ¥ =apparent Young's modulus of solid with inclusions in x- and y- directions
£5o=Young's modulus of material
=F (plane stress), //(1—»*) (plane strain) (18)
where £ is the Young's modulus of the material measured with thin plate specimens.

Numerical results from the present analyses are expected to approach the exact values with increasing numbers
of the boundary elements on the unit region, or N. As an example, Table 1 gives I and C, for the case of ¢/b=
1, a/b=0.5, (1=0, 6.=0) with various values of N in the problems (a) and (b). We find convergence of the results
with increasing division numbers N. Both the problems (a) and (b) are calculated for the plane strain case. The
procedure as shown in Table 1 has been taken to confirm high accuracy of all the numerical results, which is

Table 1 Variations of results with division numbers

Problem (a) Problem (b)
[e/b=1, a/b=05,(a=a, a:=0), [e/b=1, a/b=05,(c1=0, 62=0),
N rectangular unit region] tnanguhl unit legmn]
< :—L-- Y = f % \
4 ( ava ) Cx d ( mJE) Cx
8 0.39417 1.11994 0.34645 1.23017
12 0.39334 1.12083 0.34645 1.23115
24 0.39331 1.12092 0.34645 1.23115
36 (.39331 1.12094 0.34645 1.23115
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discussed in the following section.

3.2 Numerical results
Numerical values of F subjected to tensile stress ) in the x-direction for the problems (a) and (b) are plotted
with solid curves in Figs. 4(a) and 4(b), respectively.
In the case of A—0, f is the stress intensity factor for a single rigid flat inclusion in a wide plate subjected to
tensile stress ), and F is given by the explicit form

_flico _1+4x
[Fli-o ™ (19)

In both the problems, the trend of increasing or decreasing I with increasing 4 varies depending on the values
of ¢/b.

Tensile stiffness factors Cr and C, defined by Eq. (18) have been calculated for various values of ¢/b and A.
The results for both the problems are plotted with solid curves in Figs. 5(a)-6(h). C:and C, monotonically increase
with increasing values of 4. Cr, A-curves shown in Figs. 5(a) and 5(b) rise with decreasing values of ¢/b which
indicate the ratio of space between up and down inclusions.
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3.3 Formulae of the tensile stiffness
In the above, we calculated the tensile stiffness factors Cr and Cy for various combinations of A and . However,
when the values for some other cases are required, we have to make interpolations with respect to two parameters,
causing considerable errors in the results.
We have fitted a power series to analytical values of Cr and Cy for both the problems®!, and the following
formulae are obtained:
(a): Rectangular array of rigid short flat inclusions (Fig. 1(a))
In the case subjected to tension (gi=0, 6:=0) in the x-direction,
»=1+2%0.0213—0.3889A+1.1144°—0.83541° + 22(0.4066 +0.45694 — 1.135742 +1.21731%)]
(range of 0.25<p<4 and A<0.8; mean error 0.29). (20)
In the case subjected to tension (=0, c:=¢) in the y-direction,
Cy=1+u0.0728 +0.0326A+ £(0.0036 —0.01632)]
(range of 0< <4 and A<0.8; mean error 0.04%). (21)
(b): Zig-zag array of rigid short flat inclusions (Fig. 1(b))
In the case subjected to tension (a1=0, g:=0) in the x-direction,
Ce=1+440.0082—0.13912—0.03504* +0.14532+ 22(0.8191 +0.60454 — 1.11282° +1.48924%)]
(range of 0.25<x<2 and A<0.8; mean error 0.8%). (22)
In the case subjected to tension (=0, 6z=0) in the y-direction,
Cy=1+21[0.1438+0.0325A+ £(0.0100 —0.0434.2)]
(range of 0<px<4 and A<(0.8; mean error 0.2%,). (23)
Eqgs. (20) to (23) give practically exact values, as see from the mean percent errors shown in parentheses with
each of the formulae. The values for these equations are plotted in Figs. 5(a) to 6(b) with dashed curves, showing
close agreement with the analytical curves.

4. Conclusions

(1) We considered a rectangular array and a zig-zag array of rigid short flat inclusions in an infinite solid subjected
to biaxial tension. In the analyses, we took a rectangular unit region and a triangular unit region, and expressed the
complex stress potentials in eigen-function expansions in forms satisfying the continuity relations along the inclusion
boundaries. The unknown coefficients were determined from the boundary conditions of the unit regions which were
expressed in terms of resultant forces and displacements.

(2) Numerical calculations were carried out for various combinations of a/b and ¢/b, where a, b and ¢ were the
half-length of the inclusions and the inclusion spaces in the x, y-directions. The stress intensity factor and the tensile
stiffness for the solids that contain the inclusions were represented in the figures by dimensionless quantities F, and
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C: and C,.
(3) The results of the tensile stiffness were fitted to reliable polynomial formulae. They are useful to the design of
the composit materials.
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